
1

LLM-based Test-driven Interactive Code
Generation: User Study and Empirical Evaluation

Sarah Fakhoury∗, Aaditya Naik†, Georgios Sakkas‡, Saikat Chakraborty∗ and Shuvendu K. Lahiri∗
∗Microsoft Research

{sfakhoury, saikatc, shuvendu}@microsoft.com
†University of Pennsylvania

asnaik@seas.upenn.edu
†University of California, San Diego

gsakkas@eng.ucsd.edu

Abstract—Large language models (LLMs) have shown great
potential in automating significant aspects of coding by produc-
ing natural code from informal natural language (NL) intent.
However, given NL is informal, it does not lend easily to checking
that the generated code correctly satisfies the user intent.

In this paper, we propose a novel interactive workflow
TICODER for guided intent clarification (i.e., partial formaliza-
tion) through tests to support the generation of more accu-
rate code suggestions. Through a mixed methods user study
with 15 programmers, we present an empirical evaluation of
the effectiveness of the workflow to improve code generation
accuracy. We find that participants using the proposed workflow
are significantly more likely to correctly evaluate AI generated
code, and report significantly less task-induced cognitive load.
Furthermore, we test the potential of the workflow at scale with
four different state-of-the-art LLMs on two python datasets,
using an idealized proxy for a user feedback. We observe an
average absolute improvement of 38.43% in the pass@1 code
generation accuracy for both datasets and across all LLMs within
5 user interactions, in addition to the automatic generation of
accompanying unit tests.

Index Terms—Intent Disambiguation, Code Generation,
LLMs, Human Factors, Cognitive Load, Test Generation.

I. INTRODUCTION

LARGE Language Models (LLMs) have shown
tremendous potential in generating natural-looking

programs from informal intent expressed in natural
language. There has been a surge in research around
training LLMs over programming language artifacts
in just the last couple of years [Chen et al.(2021)],
[Chowdhery et al.(2022)], [Nijkamp et al.(2022)],
[Fried et al.(2022)], [Xu et al.(2022a)]. Commercial offerings
such as GitHub Copilot [GitHub(2022)] are widely available,
and have been shown to generate a non-trivial fraction of
code in real-world scenarios [Ziegler et al.(2022)].

However, there are several challenges that arise
when generating code from natural language
specifications.[Liang et al.(2023)], [Xu et al.(2022b)]. For
example, natural language prompts crafted by users may
not always fully capture a their intent, as they may contain
ambiguous language and lack of nuance. More importantly,
it is not possible to automatically evaluate whether code
generated from a natural language prompt is correct. Natural

language is inherently ambiguous and enforcing the user
intent through some mechanical process (such as testing,
static analysis or formal verification) is not immediately
possible.

Consider the following docstring, taken from
MBPP [Austin et al.(2021b)], a popular Python programming
tasks benchmark:

1 def text_lowercase_underscore(text):
2 """Write a function that returns true if the

input string contains sequences of lowercase
letters joined with an underscore and false
otherwise""

While the intent may seem obvious at first, it is
not immediately clear how to check the correctness
of a potential solution. Querying an LLM such as
text-davinci-003 [Ouyang et al.(2022)] yields several
plausibly correct code implementations that pass simple tests
such as rejecting the empty string “ ”, or accepting the string
"aa_bb". However, it may also produce subtly buggy code
solutions that accept strings such as "aa_bb_cc", which is in-
consistent with the original user intent that expects the string to
consist entirely of two sequences of lowercase letters joined by
an underscore (as defined by the accompanying hidden refer-
ence solution and the validation tests from MBPP). In practice,
this can often lead to users accepting code with subtle bugs
while using LLMs [Asare et al.(2022)], [Perry et al.(2022)].
The apparent ambiguity in this particular docstring, and more
importantly the informal nature of natural language, highlights
the inability to immediately ascertain the correctness of the
code generated by an LLM. Instead, it would be desirable to
avoid surfacing such subtly incorrect codes by first clarifying,
and partially formalizing, the user intent into a checkable
specification.

This issue can be compounded when users are presented
with a list of candidate suggestions from LLMs, such as
in the Copilot VSCode IDE suggestions pane, which can
display up to 10 suggestions. Users often have to linearly
scan the list of code suggestions, review them, and reject
the incorrect ones until arriving at one that satisfies their
intent. In such situations, subtle bugs may be overlooked,
with significant downstream impacts. In fact, several recent

ar
X

iv
:2

40
4.

10
10

0v
1

 [
cs

.S
E

]
 1

5
A

pr
 2

02
4

2

works exploring developer-AI interaction have highlighted the
need for mechanisms to facilitate verification of AI-generated
code[Bird et al.(2022)], [Xu et al.(2022b)], such as those that
allow users to use tests that disambiguate between the different
code suggestions [Jha et al.(2010)]. However, prior research
has shown that it can be difficult for users to manually provide
a sufficient number of test cases to disambiguate suggestions
upfront [Lau(2009)].

Inspired by findings around example generation and
disambiguation techniques in Programming By Exam-
ples (PBE) [Zhang et al.(2020)], and recent emerging abil-
ity of LLMs to generate tests [Lemieux et al.(2023)],
[Dinella et al.(2022)], [Schäfer et al.(2023)] in this paper, we
propose leveraging user-feedback through LLM-generated
tests to improve correctness of LLM-generated code.
Specifically, we propose the workflow of test-driven interac-
tive code generation (TICODER) to (a) clarify (i.e., partially
formalize) user intent through generated tests, and (b) generate
a ranked list of code that is consistent with such tests.

Let us demonstrate a simple instantiation of this framework
using the earlier example, where a user prompts an hypothet-
ical LLM to generate code satisfying their natural language
intent. Instead of directly displaying a list of plausible code
suggestions, our framework TICODER would query the user
with a question:

text_lowercase_underscore("aa_bb_cc") == True?

Let us assume that the user answers ’no’, since they
expect only two sequences of lowercase letters, joined by one
underscore, as mentioned earlier. The workflow would likely
query the user again with the following question:

text_lowercase_underscore("aa_bb") == True?

If the user says ’yes’, then the system would output the list
of approved tests, as well as a set of semantically ranked code
suggestions that are consistent with those tests. Once the user
chooses a suggestion from such a list, it would generate code
along with accompanying tests.

def text_lowercase_underscore(text):
return True if bool(re.search(r’ˆ[a-z]_[a-z]+$
’, text)) else False

def test_text_lowercase_underscore():
assert text_lowercase_underscore("aa_bb")==
True

test_text_lowercase_underscore()

In the case of LLM-based code generation, the generated
tests not only help make natural language intent more precise
and prune incorrect suggestions generated by the LLM, but
can also serves as debugging aid for remaining suggestions
and regression tests for future code edits [Ziegler et al.(2022)].

While the proposed framework appears intuitive, the utility
of the interactive framework is contingent upon (a) the ability
of LLMs to generate useful tests, and (b) the cost-benefit trade-
off of the overhead of user interaction versus the benefit on
pruning and ranking of code suggestions. To this end, we seek
to understand: How does the proposed workflow impact the
performance of developers evaluating AI generated code?

In addition, the proposed framework should scale, augmenting
the code generation accuracy of several open and closed-
source LLMs. Thus we also seek to answer: Does proposed
workflow augment the accuracy of code generation mod-
els?

To answer these questions, we explore the effectiveness
of our proposed framework through a (1) mixed-effects user
study and (2) a large scale evaluation of the approach on two
Python benchmarks for code generation. This paper makes
the following contributions:
1) We propose an interactive workflow, TICODER, for guiding

user intent clarification through automatically-generated
tests and improving code generation accuracy of LLMs.
TICODER leverages off-the-shelf LLMs for generating
code and tests, and provides a mechanism to check AI-
generated code through user-approved tests.

2) We evaluate the effectiveness of TICODER by conducting a
mixed-methods user study comparing two different variants
of TICODER for generating and evaluating code sugges-
tions, including a baseline condition representing existing
developer-AI interaction workflows. We observe a signifi-
cant reduction in cognitive effort reported by participants
using either variant of TICODER over existing interaction
mechanisms.

3) We further evaluate the performance of the TICODER
workflow at scale by simulating user feedback, using the
reference code solution as an idealized proxy. TICODER
is evaluated on on two Python datasets, MBPP and Hu-
manEval, and a mixture of four open and closed sourced
LLMs. We demonstrate that TICODER contributes to im-
proving the code generation accuracy of all LLMs con-
sidered. We observe an average absolute improvement of
38.43% in pass@1 code generation accuracy within 5
user interactions across both benchmarks. For MBPP, we
observe an increase in pass@1 metric by an average of
23.88% with a single user query, and by 41.60% with
5 user queries. For HumanEval pass@1 increases by an
average of 15.25% with a single user query, and by 35.26%
with 5 user queries.

II. RELATED WORK

1) Improving Code Generation Accuracy: Techniques for
improving code generation accuracy is a rapidly growing
field of work. Unlike the work proposed in this paper, these
techniques do not consider user feedback, or guide users
in clarifying their intent formally; we cover them briefly.
AlphaCode [Li et al.(2022)] and CodeT [Chen et al.(2022)]
both propose techniques to improve code generation ac-
curacy by generating tests using LLMs, and then group-
ing code suggestions by the set of tests that they satisfy.
CodeT [Chen et al.(2022)] refines the approach by scoring
tests and code suggestions simultaneously by prioritizing tests
that satisfy many code suggestions and prioritizing codes
that satisfy many tests. As part of future work, we plan
to explore if our approach may benefit from code and test
ranking algorithms in CodeT. Similarly, work on program syn-
thesis [Gulwani et al.(2017)], [Solar-Lezama(2009)] generates

3

code that satisfies a formal specification either expressed as
a logical specification or input-output tests [Gulwani(2011)].
Our work differs in that we use LLMs to generate code
from informal specifications, i.e. natural language intent.
However, it would be interesting for future work to lever-
age user-provided tests to improve the quality of code
generation, as explored in recent works [Jain et al.(2022)],
[Rahmani et al.(2021)]. In this work, to evaluate our pro-
posed approach at scale, we simulate user feedback using
the code reference implementation as an idealized proxy,
similar to prior works in oracle-guided inductive synthe-
sis [Jha et al.(2010)], [Jha and Seshia(2017)] and interactive
program synthesis [Le et al.(2017)], [Ji et al.(2020)] where an
an oracle (reference implementation or users) is queried to
identify the output for a given input. However, prior works
in this area appeal to an automatic symbolic engine (such
as a constraint solver [Ji et al.(2020)] or automata construc-
tion [Zhang et al.(2020)]) to generate distinguishing example
inputs for a pair of programs, which is inconceivable for
general purpose imperative programming languages such as
Python.

2) Usability of AI Programming Assistants: There exists
several prior works exploring the usability of AI programming
assistants. In this section, we focus on recent work that
identifies challenges related to the expressing of intent and
control over the generation suggestions of AI assistants.

Liang et al. [Liang et al.(2023)] identify that giving up on
incorporating generated code, and lack of ability to provide
feedback, are the most common usability issues encountered
when using completion-based AI programming assistants. This
often occurs because the code does not implement the desired
functionality, participants do not know why certain code was
generated and had trouble controlling the output to be aligned
with their desired intent.

McNutt et al. [McNutt et al.(2023)] enumerate a design
space of interactions with code assistants, including how users
should be able to disambiguate candidate programs or refine
their initial specifications, echoing prior studies have indicated
that disambiguation can be valuable in the context of assis-
tants like GitHub Copilot [Barke et al.(2023)] and traditional
program synthesis tools [Mayer et al.(2015)]. Similarly, Xu
et al. [Xu et al.(2022b)] explored challenges of IDE-based
AI assistants, including how well specified the queries that
users formulate are. They find that participants frequently have
trouble expressing intent in their natural language queries to
the assistant, and issues of under specification often relate to
ambiguous instructions, such as omitting variable names.

Mozannar et al. [Mozannar et al.(2022)] identify 12 core
activities associated with using GitHub Copilot and find that
programmers often iterate on their prompts until they obtain
the suggestion they desire, and spend a significant amount of
time verifying code suggestions. In fact, recent work by Bird
et al. [Bird et al.(2022)] shows that as result of AI-powered
tools, developer roles are shifting so that more time is spent
time reviewing code than actually writing code. Our work
builds upon observations of previous studies, and explores
mechanisms to support code evaluation tasks.

III. RESEARCH QUESTIONS AND PAPER ORGANIZATION

We briefly introduce the research questions and discuss
paper organization. In the following Section IV-A we introduce
our proposed approach: TiCoder. Then we answer two distinct
research questions:

RQ1 How does TiCoder impact the performance of python
developers evaluating AI generated code, in terms of
task correctness, time, and cognitive load? To answer
RQ1, we conduct a user study, where participants use
AI assistants augmented with the TiCoder workflow. We
evaluate the cost benefit tradeoff of the proposed ap-
proach on developer effort when evaluating AI generated
code.

RQ2 Does the TiCoder workflow improve the accuracy
of generated code suggestions? To answer RQ2, we
explore the code generation accuracy of LLMs augmented
with the TiCoder workflow on two code generation
benchmarks in python.

The methodology, evaluation, and results of each research
question are organized in the following sections: Sections V
and VI describe the methodology and results for RQ1, and
Section VII describes the methodology and results for RQ2.
We separate methods and results of RQs into distinct sections
for clarity. We conclude with a Discussion (Sec. VIII) of the
implications of our work to the broader research community,
and the Limitations of the presented experiments (Sec. IX).

IV. PROPOSED APPROACH: TICODER

Fig. 1: TICODER workflow.

In this section, we outline a proposed workflow for leverag-
ing test generation and user feedback to clarify (i.e., partially
formalize) user intent. We refer to this approach as TICODER
(Test-Driven Interactive Code Generation), and define two
variants of the workflow and surface this interaction to users
in the following subsections.

A. High-level Workflow

Figure 1 describes the high-level workflow of Test-Driven
Interactive Code Generation (TICODER).

4

1) The user requests the AI programming assistant to generate
a function, given optional code context including an exist-
ing prefix in a file, a natural language description, and the
function header containing method name, parameters and
returns.

2) The AI programming assistant internally generates a set of
candidate code and test suggestions by prompting an LLM.

3) The set of generated tests are executed for each candidate
code suggestion. The set of tests that pass or fail on each
code suggestion are stored.

4) Using execution information, the AI programming assistant
ranks (according to some heuristics) the set of generated
tests and then surfaces the top ranked test to the user as a
query; asking the user if a test is consistent with the user’s
intent.

5) The user responds either PASS, UNDEFINED, or FAIL sig-
nifying if the test is respectively: consistent, precondition-
violating1, or inconsistent with the user intent. Optionally,
in the case of FAIL, the user can provide the correct test
output OUTPUT.

6) The AI programming assistant leverages the user response
to prune, and rank the set of code and test suggestions.

7) Interaction steps 4-6 can be repeated for multiple iterations,
until a predefined termination criteria (e.g., fixed number
of steps, absence of tests) has been satisfied.

8) Once the interaction terminates, the AI programming as-
sistant outputs (a) a set of tests that the user has approved
or specified, and (b) a ranked list of code suggestions that
are consistent with the user responses.

We define two variants of the workflow: TICODER-
PASSFAIL and TICODER-OUTPUT. The first scenario rep-
resents the case where the user provides only a Boolean
PASS,FAIL response. The second scenario, TICODER-
OUTPUT, extends the first scenario and represents the case
where the user provides the expected output OUTPUT in the
case of a FAIL test.

We present both the scenarios as they enjoy comple-
mentary benefits. The TICODER-PASSFAIL scenario is more
lightweight, in terms of user feedback, as well as, gener-
alizes well for richer tests beyond input-output examples.
For example, tests for stateful APIs comprises of a test-
prefix as input and the output oracle consists of a non-trivial
predicate (e.g., checking functional correctness of a stack
object using the predicate s.pop() == a on a stack object
s and element a) [Dinella et al.(2022)]. On the other hand,
TICODER-OUTPUT puts less burden on an LLM to create the
correct output for a given test input; relying instead on the user.
However, it may require the user to specify a possibly non-
trivial test oracle when used beyond input-output examples.

B. TiCoder Implementation

In this section, we discuss one possible implementation of
the TICODER workflow. Specifically, we outline the approach
to generating code and test suggestions, ranking candidate tests

1A test violates a precondition if the function is undefined on the test input.
For example, the test assert SquareRoot(-4) == -2 undefined on
negative numbers.

import re

def text_lowercase_underscore(text):

 """Write a function that returns true if the input string
 contains only lowercase letters joined with an underscore,
 and false otherwise."""

 pass

def test_text_lowercase_underscore():
 assert text_lowercase_underscore(

Prefix prfxp

Description sp

Header hp

Prompt Body b'p

Test Body t'p

Co
de

 P
ro

m
pt

Te
st

 P
ro

m
pt

Fig. 2: Example format, as well as code and test prompts for
the running example.
to surface to the user, pruning and ranking code suggestions
by user response. To simplify the presentation, we restrict
ourselves to the case of single function synthesis, where the
user input consists of a natural language comment sp, the
function header hp, as well as any optional prefix prfxp needed
to generate the body of the function p. Figure 2 shows an
example for our running example. In addition, we also assume
the presence of a set of hidden tests Tp (input-output pairs for
simplicity) to evaluate the correctness of the generated code,
as well as a hidden reference (oracle) implementation of p,
namely bp. Our workflow does not have access to either Tp or
bp.

1) Generating Code and Tests: We outline one possible
choice for implementing the prompt generation for generating
code and test suggestions for an example.

Figure 2 presents a possible code prompt (in the gray
boxes) that can be used to query an LLM to produce a set
of code suggestions for our running example. Querying a
LLM with the code generation prompt will result in a set
of code suggestions similar to ones shown in Figure 3. Code
suggestion c3 is a valid solution to the problem, while c1 is an
incorrect code suggestion (since it allows the first substring to
start with an uppercase letter) and c2 is also incorrect (since
it allows more than one sequence of lowercase letters joined
with an underscore). Similarly, the green boxes in Figure 2
shows one possible test prompt that augments the code prompt
with the statement pass as the method body (corresponding
to a placeholder implementation in Python) along with the
assertion to be completed within a test function. We use the
generated test suggestions (Figure 3) to present the user with
a set of tests. Some of these are consistent with the user intent
(t3); while others are inconsistent with the user intent (t1 and
t2).

2) Ranking test suggestions: After obtaining the set of
tests produced by an LLM, the user is presented with a
sequence of tests. The user response to these proposed tests in
both TICODER scenarios (TICODER-PASSFAIL, TICODER-
OUTPUT) are used to prune and rank code suggestions. To
minimize the number of user interactions, it is desirable to
prioritize tests that would result in the most number of incor-
rect code suggestions being pruned away [Jha et al.(2010)],
[Le et al.(2017)]. To achieve this, the set of tests are executed
against the set of possible code suggestions generated by the
LLM.

Then, using this execution information, we adopt a
discriminative test ranking policy that prioritizes tests
that can discriminate best among the set of code suggestions

5

Fig. 3: Code and test suggestions for the running example in Figure 2 generated from a LLM. Code suggestion c3 and test
suggestion t3 are both correct, while code suggestions c1, c2 and test suggestions t1, t2 are incorrect (appear shaded), i.e. they
don’t satisfy the problem prompts in Figure 2.

generated by the LLM.
If a test t can discriminate between code suggestions well

(i.e., splits the set of code suggestions into roughly equal
halves), then it would prune away a substantial fraction of
the code suggestions irrespective of the user response (either
PASS or FAIL).

More precisely, let U be the set of test suggestions and G
be the set of code suggestions that have not been pruned away
after k ≥ 0 user interactions. For each test t ∈ U , we split the
set of code suggestions G into the sets G+

t and G−
t of code

suggestions that pass and fail the assertion in t, respectively.
We then prioritize tests where the ratio of the sizes of these
two set is closest to 1. In other words, we rank the tests in
decreasing order using the following scoring metric sdiscr:

sdiscr(t) =

0 if max(|G+
t |, |G−

t |) = 0,

min(|G+
t |,|G−

t |)
max(|G+

t |,|G−
t |) otherwise.

Note that the test ranking strategy is uniform for both the
scenarios, although the test output will be possibly mutated
by the user response in TICODER-OUTPUT.

Consider the example in Figure 3. Consider the two tests t1
and t2: Two code suggestions {c2, c3} FAIL on test suggestion
t1 while one suggestion {c1} PASS, making sdiscr(t1) =
min(1, 2)/max(1, 2) = 1/2. Similarly, two code suggestions
{c1, c2} PASS on test suggestion t2 while one suggestion {c3}
FAIL and sdiscr(t2) = 1/2.

All code suggestions in this example PASS on test t3 making
sdiscr(t3) = 0.

3) Pruning and ranking code suggestions: TICODER re-
turns a ranked list of code suggestions, whose behavior is
consistent with all the user responses, and prunes the other
code suggestions generated by the LLM, whose execution
behaviour on tests is contradictory to user expectation. Let
us first consider the case of code pruning. Let t

.
= (i, o) be

a test in the form of an input-output example presented to
the user. If the user responds PASS, then we prune any code

c ∈ G for which executing c(i) ̸= o. Similarly, if the user
responds FAIL, then we prune any code c ∈ G for which
executing c(i) = o. In addition, for TICODER-OUTPUT if the
user provides the desired output o′ for the input i, then we can
further prune any code suggestion c for which c(i) ̸= o′. Note
that we cannot soundly prune any code if the user responds
with UNDEFINED.

Finally, we define a simple code ranking strategy that uses
the tests in U to determine a ranking on code suggestions in G
as follows: Each generated code c ∈ G is executed with each
test t ∈ U and gets assigned as a score the number of passing
tests dc. The codes are then ranked based on the decreasing
order of dc.

Following from the example in the previous section, rep-
resented in Figure 3, code suggestion c1 passes on all tests
{t1, t2, t3}, code suggestion c2 passes on {t2, t3} and code
suggestion c3 passes on {t3}. Our ranking would therefore
rank c1 highest initially in the absence of any feedback from
the user.

V. RQ1: USER STUDY METHODOLOGY

We aim to understand how the TICODER workflow may
support software developers as they use AI-programming
assistants to generate and evaluate code suggestions. We are
seeking to answer the following research question:

RQ1 How does TiCoder impact the performance of python
developers evaluating AI generated code, in terms of
task correctness, time, and cognitive load?

To answer our research question we conduct a controlled
study with 15 participants consisting of 3 coding evaluation
tasks. To complete each task, participants are asked to interact
with one of the following AI assistants: Assistant 1 with no
user intent refinement, Assistant 2 representing TICODER-
PASSFAIL workflow, or Assistant 3 representing TICODER-
OUTPUT workflow. Participants use each assistant to generate
and evaluate a set of code suggestions.

We recruit participants using a mix of distribution lists and
personal contacts. 3 of 18 participants were used as part of

6

the pilot study to inform our design, and the remaining 15
are used in the final experiment. Table I contains participant
demographic information. 8 participants are either professional
software engineers or researchers at Microsoft, and the re-
maining 10 participants are PhD students from academia. The
study was IRB approved with voluntary participation and paid
$15. All interviews were conducted over a video-conferencing
platform and lasted approximately 45-minutes.

Participants were asked to complete each code evaluation
tasks with one of the three different AI code generation
assistants. Each task had a time limit of 15 minutes. We use
a within subject design, such that each participant uses all
three assistants, i.e. a different assistant for each task. Each
AI assistant represents one treatment under study, which we
describe in the next subsection.

ID Python
Experience

Python
Frequency

AI Programming
Assistant Use Occupation

Pilot >5 years Daily Daily Industry
Pilot >5 years Monthly Monthly Industry
Pilot >5 years Daily Daily Industry
P1 >5 years Monthly Daily Industry
P2 >5 years Weekly Monthly Industry
P3 >5 years Rarely or never Rarely or never Industry
P4 >5 years Daily Daily Industry
P5 3 - 5 years Weekly Weekly Academia
P6 >5 years Weekly Weekly Academia
P7 >5 years Weekly Monthly Industry
P8 >5 years Monthly Rarely or never Academia
P9 >5 years Daily Monthly Academia
P10 1 - 2 years Weekly Daily Academia
P11 >5 years Daily Daily Academia
P12 3 - 5 years Weekly Rarely or never Academia
P13 >5 years Weekly Rarely or never Academia
P14 3 - 5 years Rarely or never Rarely or never Academia
P15 >5 years Daily Daily Industry

TABLE I: *Weekly denotes a few times a week, *Monthly
denotes a few times a month.

A. Treatments

The experiment includes one control condition and two
distinct treatment conditions, implemented as different AI pro-
gramming assistants. Each assistant differs in it’s interaction
mechanism with the developer and dictates the method in
which to surface the final set of code suggestions shown to
each user. To ensure that the same set of codes is shown to all
participants across treatments, we pre-select the prompt used
to generate code suggestions. Second, to ensure we measure
the impact of our dependent variables on only the process of
evaluating AI generated code, we also restrict the ability to edit
the AI generated code suggestions. The interaction framework
of each Assistant is described below:

1) Control condition: AI Programming Assistant 1:
Assistant 1 represents the control condition for the exper-
iment. Given the pre-selected prompt, Assistant 1 gener-
ates 5 code suggestions for the user, surfaced in a ran-
dom order. Participants using Assistant 1 always see 5
unique code suggestions. We make this decision to reflect
the current user experience scenario of several real-world
AI code generation tools, such as GitHub Copilot’s com-
pletion panel. For example, the GitHub Copilot comple-

tion panel in VSCode shows the user up to 10 possible
code suggestions at a time. Our decision is also informed
by research pointing to the benefit of surfacing multiple
code suggestions[McNutt et al.(2023)], [Mayer et al.(2015)],
[Barke et al.(2023)], [Liang et al.(2023)]. We limit the maxi-
mum number of codes to 5 so as to allow the participant to
complete each task within 15 minutes.

2) Treatment condition: AI Programming Assistant 2:
Assistant 2 represents the TICODER-PASSFAIL (Sec. IV-A)
scenario, where a user provides instructions in the form of a
prompt, and then the Assistant generates test cases that the user
must validate. The user validates each test by indicating if the
test should pass or fail. Assistant 2 then uses the tests to prune
any of the 5 code suggestions that differ in behaviour validated
by the user. For example, if the user decides that the test should
pass, only codes that pass the test are retained. These retained
code suggestions are shown to the user, in random order.

3) Treatment condition: AI Programming Assistant
3: Assistant 3 represents the TICODER-OUTPUT scenario
(Sec. IV-A). Instead of indicating whether a test should
pass/fail (i.e. Assistant 2 interaction mechanism), users must
provide the expected output of the test. Assistant 3 then uses
the tests completed by the user to prune any of the 5 code
suggestions that do not generate an output consistent with what
the participant defined.

Both Assistants 2 and 3 use the tests to prune away
generated codes that do not match the behaviour specified by
the participant. We restrict the number of pruned codes in each
task so that a participant using Assistant 2 or 3 will always
see between 3-4 code suggestions if they correctly evaluate
the tests shown to them. We make this decision to reflect the
potential real-world scenario where TICODER is able to prune
away at least 1 of the candidate code suggestions generated
by an AI Assistant. However, a participant may see less than
3 code suggestions if they specify a contradictory or incorrect
program behaviour through their answers to the tests.

Participants interact with the assistants in an online survey
platform, but they are able to copy and paste the generated
code and tests into an IDE of their choice during the task.
All code is formatted so as to not introduce external factors
into the participants’ time. The interactive nature of the AI
Assistants in encoded into the survey logic, to mimic real-
world execution and pruning of code suggestions based on
a user’s answers. Participants can maintain their view of the
tests they validated in the survey throughout the task.

B. Task Design

We selected coding tasks that would satisfy the following
criteria, for each of the three tasks: (1) evaluating 5 AI-
generated code suggestions could be completed in fifteen
minutes, (2) there are syntactically valid but semantically
incorrect code completions given by the LLM (GPT-3.5)
with a diversity of error types across tasks (3) they varied
in problem domain and complexity, and (4) the LLM could
generate reasonable tests that capture the diverse error types.

1) Identifying Task Candidates: We select task candidates
from the MBPP dataset [Austin et al.(2021a)], a popular code

7

Task Task Name Description Treatments

T1 LOWERUNDERSCORE
Write a function that returns true if the input string consists of two sequences of lowercase letters joined
with a single underscore and false otherwise. A1, A2, A3

T2 FIRSTMISSING Write a function that finds the smallest missing number from a sorted list of integers, starting from 0. A1, A2, A3

T3 MAXPRODUCT
Write a function to find the maximum product formed by multiplying numbers
of an increasing contiguous subsequence of that array. The sequence may include negative numbers. A1, A2, A3

TABLE II: Tasks included in the user study, derived from the MBPP dataset. A1 represents the control treatment, A2 represents
the TICODER-PASSFAIL treatment, and A3 represents the TICODER-OUTPUT treatment.

generation benchmark, consisting of short Python functions
designed to be solved by entry-level programmers. MBPP
provides a natural language instruction, a set of tests, and
a ground truth code implementation for each problem. We
cluster functions based on problem domain, complexity and
size. From each cluster we identified a set of candidate
functions for which we generated a code and test completions
for using a LLM. We finally selected 3 problems for the
code completion tasks that best satisfied the selection criteria.
These problems represent three distinct styles: MAXPROD-
UCT is an algorithmic task involving dynamic programming,
LOWERUNDERSCORE involves using regex for string manipu-
lation, and FIRSTMISSING involves a recursive binary search.
The tasks are detailed in Table II.

2) Generating Code and Test Suggestions: To generate
the code and test candidates, we give the natural language
instructions from the MBPP dataset as a prompt to the OpenAI
GPT-3.5-turbo chat completion endpoint with the default
API parameters (temperature = 1.0). We then sample a set of
4 incorrect codes using the tests from the MBPP dataset, to
identify buggy programs for each problem. We also run the
set of generated tests against the set of codes to make sure
at least 1 and at most 2 code suggestions are caught by the
test, to restrict the number of codes that would be pruned
away. Rather than manually inject bugs into the ground truth
program, we choose to sample the set of buggy codes from
the LLM to reflect the nature of bugs users may encounter in
AI generated code.

The final set of tests and codes are fixed per task, regardless
of the treatment used. For each task there are 5 suggestions: 4
buggy codes and 1 code that is extracted as the ground truth
from the MBPP dataset. If the ground truth program extracted
from MBPP does not handle certain pre-condition violations,
we augment the code to match the task intent. For Assistants
2 and 3, we show exactly 2 of the AI generated tests for each
task. The final set of codes are either directly shown to the user
by Assistant 1, or first pruned based on the user’s evaluation
of the tests for Assistants 2 and 3.

C. Study Protocol

At the start of the study, participants are given general
instructions around how to interact with each AI assistant,
the differences between them, and how to validate generated
tests. Participants are also given time to set up their Python
interpreter or environment before the start of the study. The
survey interface used to interact with the AI assistants is shown
in Figure 4. Participants are able to view the coding task
description, and depending on the treatment received, they can

answer the AI Assistant’s question, around the validation of
a test case, directly in the survey. Once code suggestions are
surfaced by the Assistant, participants are allowed to copy the
code and run it for debugging, along with the set of provided
tests, depending on the treatment. For each task, participants
were asked to identify if the AI Assistant had returned a correct
code suggestion, and if yes, which one.

For each task, participants are encouraged to ask any ques-
tions around the task instructions. Our aim is to approximate
the scenario where the user clearly understands what they
want the AI Assistant to generate, such that they would query
the AI Assistant with the same or similar prompt originally
used to generate code and test suggestions. Although the real
world usage of the workflow would differ, as developers often
edit their prompts, we choose to fix the prompt to control for
the generated code and tests across participants. Furthermore,
we are not interested in the task of code generation, rather
code validation, i.e. not if the user can edit the prompt to get
different suggestions, but rather how the TICODER workflow
can help refine user provided natural language specification
through tests, and how it may impact a developer’s ability to
validate code, and locate a correct suggestion out of a set of
generated codes. While TICODER may help reduce the number
of times a user must edit their original prompt, we save this
exploration for future work.

D. Measured Variables

From the study recordings and user-submitted survey data,
we collect a set of metrics on each task completed by the
participants. In particular, we explore TICODER impact across
three important components of productivity: task correctness,
time on task, and the self-reported effort needed to complete
the task:

Time. We measured time taken to complete each task from
the recordings of each participant interview. Time for each
task includes time taken to evaluate any tests.

Correctness. The correctness is dependant on 1) the correct
evaluation of the generated tests, relative to the oracle code
implementation and 2) the correct selection of the code sug-
gestion whose behaviour reflects the intent of the prompt. Each
task has at most 1 correct answer: either one of the generated
code suggestions is correct or none of suggestions are correct.

Cognitive Load. After each task, we measure participants’
self-reported cognitive load via their responses to five NASA
TLX questions [Hart and Staveland(1988)], a standardized ap-
proach to measuring self-reported cognitive load used widely
across disciplines [Hart(2006)]. We measure the following

8

Fig. 4: From left to right: Examples of different interaction sequences invoked by Assistant 1 on task T1 (directly display all
code suggestions), Assistant 2 on T2 (validate the test output on a given input), and Assistant 3 on T3 (specify the output for
a given input).

metrics using the standard 20 point scale: mental demand,
effort, perceived success, pace, and stress.

E. Evaluation of Measured Variables

For each measured variable, time, correctness, and dimen-
sions of cognitive load, we run a mixed-effects regression
model. We use with either linear or logistic models depending
on the data type. We use the treatment condition as the fix-
effects independent variable, and participant ID and coding
task as the random-effects variables.

We conduct an omnibus test using ANOVA to cal-
culate the p-value of the treatment condition (the assis-
tant used) against the measured metrics. To correct for
multiple comparisons and conduct False Discovery Rate
(FDR) correction[Benjamini and Hochberg(1995)] for signif-
icant pairs of conditions. We only report Omnibus p-values
for pairs of conditions for which the results are statistically
significant, and the direction of significance.

VI. RQ1: USER STUDY RESULTS

Our key quantitative results are summarized in Table VI-C.
The last column of Table VI-C provides Omnibus p-values
for pairs of conditions for which the results are statistically
significant.

A. Impact on Task Correctness
Using the mixed-effects regression model with the cor-

rectness of the task (coded as 0 or 1), as the dependent
variable: The mean correctness was 0.40 for participants using
Assistant 1, 0.84 Assistant 2, and 0.64 Assistant 3. Although
the mean is higher in Assistant 2 and 3, the effect is significant
for Assistant 2 only with (p=0.001). Looking at the set of
mistakes made by participants, we notice several interesting
observations. In general, participants using Assistant 1 are less
likely to identify the correct code suggestion from the set of
5 suggestions.

For example, for Task 1, 3/4 participants that failed to
identify the correct suggestion were using Assistant 1. Looking
at their responses, all 3 participants identified different sug-
gestions as correct. One participant, P7 chose to not execute
any of the code suggestions, while the other two participants
P3, P5 did write tests to evaluate the code suggestions,

they were not able to find a test to characterize the bug.
Similarly, for task 3, 2/4 participants that failed to identify
the correct suggestion were using Assistant 1, and chose
different candidate suggestions. Interestingly, both participants
also only tested a subset of the codes, based on an initial guess
of the correct suggestion.

Looking at the differences between Assistant 2 and 3, we
notice that mistakes stem from both incorrect evaluations of
the surfaced tests and incorrect evaluation of the code sugges-
tions. For example, in Task 2 FIRSTMISSING, the first test case
surfaced to participants by Assistant 2 is shown shown in Fig-
ure 2.b: assert find_First_Missing([1,2,4,6])==0.
All participants shown this test correctly answered that this test
should pass. However, when the output == 0 is obfuscated on
the same test by Assistant 3, 50% of the participants indicated
that the test should evaluate to 0, and the other 50% indicated
that it should (incorrectly) evaluate to 3. It is interesting to note
that given a correct test by Assistant 2, participants are able
to correctly evaluate it, however, if Assistant 2 had generated
an incorrect test output (== 3) it may not always be the case
that participants are able to catch this bug.

However, not all tests surfaced by Assistant 2 are correct.
In Task 1, both tests surfaced by Assistant 2 had incorrect test
outputs; testing edge case scenarios that should fail. For exam-
ple text_lowercase_underscore("Hello_world") ==

True. For Assistant 2, all participants were able to correctly
identify that the test should fail. For participants using Assis-
tant 2, 4/5 indicated that it should evaluate to ’False’ while
one participant indicated that it should (incorrectly) evaluate
to ’True’.

In Task 3, all participants using Assistant 2 and Assistant
3 were able to correctly evaluate the tests surfaced by the
Assistants. However, 2 of the participants using Assistant 3
were not able to identify the correct code suggestion, whereas
all participants using Assistant 2 were successful.

By construction, upon the erroneous evaluation of a test case
by a user, the TiCoder workflow will prune all valid programs
that pass on the test. Therefore, participants that incorrectly
evaluate a test case will no longer see any valid AI-generated
programs and cannot correctly complete the task, unless they
specify that none of the code suggestions are correct. In
the TiCoder workflow, noisy user response guarantees that
generated code does not match the ’ground truth’ user intended

9

specifications. Therefore, in practice, the option to skip a test
evaluation is imperative to the usability of the workflow, and
to reduce uncertainty as the source of noisy input by the user.
Though TiCoder may significantly support users in correctly
evaluating code suggestions, the potential for noisy feedback
is a critical risk to consider.
Key Findings Participants using TiCoder Assistant 2 are
significantly more likely to correctly evaluate AI generated
code. Participants using Assistant 3 were, on average, more
likely to correctly evaluate code suggestions compared to
participants that were not using TiCoder. However, par-
ticipants were also more prone to making mistakes while
providing test outputs that dealt with edge cases.

B. Impact on Task Time
To test the effect of each Assistant on time, we used a

mixed-effects regression model, with time as the dependent
variable. The mean time taken by participants using Assistant
1 is 327.7 seconds, 284.15 for Assistant 2, and 253.88 for
Assistant 3. Although the means differ slightly across Assis-
tants, on average participants using TiCoder take less time to
complete the code evaluation tasks. However, this effect is not
significant.

This indicates that the additional overhead of requesting
participants to verify or provide the output for a test case
does not add significantly to the time taken to complete the
task. The time taken to evaluate code suggestions may be
tempered by the number of code suggestions pruned, and the
fact that Assistants 2 and 3 provide test cases to support
the code evaluation process. One indicator of how long a
participant takes to complete a task may be tied to their code
evaluation strategy. We notice that, regardless of the treatment,
participants that choose to execute and test every single code
suggestion, take much longer than participants that scan the
code suggestions and selectively execute and test candidate
suggestions that ’look’ correct to them.

For example, (P2) had relatively longer task times when
using all 3 assistants, and chose to mentally execute every
suggestion, identify the bug in each suggestion, and then pro-
ceeded to programmatically execute and test their hypothesis.
Due to their thorough evaluation strategy, P2 was correct on
all tasks. However, we do not observe a correlation between
time on task and correctness, both within, and across tasks
(Pearson’s Correlation Coefficient r = 0.016, p = 0.911).

Key Findings The time taken to validate test cases,
introduced by TiCoder, does not introduce significant over-
head to total task time. Participants using TiCoder take, on
average, less time to complete the code evaluation tasks,
however, this effect is not significant.

C. Impact on Task Induced Cognitive Load
We analyze the self-reported cognitive load of participants

across 5 dimensions, outlined by the NASA TLX: mental
demand, effort, pace, stress, and confidence of the task correct-
ness. Cognitive load is reported as the cumulative sum across
all 5 dimensions. Using a mixed-effects regression model

Metric Assistant 1
(mean)

Assistant 2
(mean)

Assistant 3
(mean)

Pairwise
Significance

Correctness* (0,1) 0.40 0.84 0.64 a1<a2(p = 0.001)

Time (seconds) 327.7 284.15 253.88 -

Cognitive
Load* (0-100) 45.46 28.00 29.52 a1>a2(p = 0.007)

a1>a3(p = 0.012)

Mental
Demand* (0-20) 12.5 7.50 7.6 a1>a2(p = 0.001)

a1>a3(p = 0.004)

Stress* (0-20) 8.26 3.84 6.35 a1>a2(p = 0.02)

Pace* (0-20) 8.13 5.38 4.70 a1>a3(p = 0.04)

Confidence (0-20) 13.5 15.92 15.88 -

Effort* (0-20) 11.00 7.15 6.7 a1>a2(p = 0.02)
a1>a3(p = 0.014)

TABLE III: Mixed-effects model analysis results for control
(Assistant 1) and treatment (Assistant 2, 3) conditions. (*
denotes a significant observation. – indicates no significance.)
with the cognitive load as the dependent variable, we observe
that participants using Assistants 2 and 3 report significantly
less cognitive load. Looking more closely at the different
dimensions, for Assistant 2 participants report significantly
less mental demand, stress, and effort required to complete
the task. For Assistant 3 participants report significantly less
mental demand, effort, and better pace.

Overall, we posit that this effect might be observed due
to the the reduced number of code suggestions that the user
must evaluate, and that tests serve as concrete mechanisms
for which to reason about the code; as well as provide a
starting point for more extensive testing of the candidate
functions, making it easier to get the task started. For example,
when asking clarifying questions about the prompt used in
a task, participants using Assistant 1 struggle to articulate
their question before coming up with an illustrative test case.
For Task 3 MAXPRODUCT, participants using Assistant 1
had difficulty conceptualizing ’increasing contiguous subse-
quence’. The interviewer made sure to answer any questions
the participant had, but took care to not give concrete examples
to not bias the participant. For example, P19 first asked
”so you’re multiplying just two numbers, but it has to be
next to each other?”. When the interviewer clarified that it
could be more than two numbers, given that the sequence is
increasing, the participant articulated their question with an
example ”...so if I have, 1 2 4 1, it would be 1 by 2 by 4?”.
In contrast, participants that had similar questions, but were
using Assistants 2 or 3, were able to more easily articulate
their questions using test cases generated by the AI Assistant.

Key Findings Participants using TiCoder, in both Assistant
2 and 3 settings, report significantly less task-induced cog-
nitive load while evaluating AI generated code. This effect
may be explained by the code pruning and test clarification
mechanisms offered by TiCoder.

VII. RQ2: BENCHMARK EVALUATION

Results from our user study, Section 5, indicate that TiCoder
can significantly improve correctness of participants evaluating
AI generated code, and that the workflow helps to reduce
task-induced cognitive load. However, it is unclear if the
proposed workflow is able to effectively generate tests that,

10

once validated, can prune and rank a set of code suggestions
with higher accuracy, on a large set of problems. To eval-
uate the potential utility of the TiCoder workflow at scale,
we implement TICODER-PASSFAIL and TICODER-OUTPUT,
and conduct an empirical evaluation on two state-of-the-art
benchmarks for code generation in python. We aim to answer
the following research question:

RQ2 Does the TiCoder workflow improve the accuracy of
generated code suggestions?

A. Datasets

We use two Python programming datasets for our
evaluation, including the sanitized version of the MBPP
dataset [Austin et al.(2021a)], dataset from Google, and
the HumanEval dataset, introduced in the Codex pa-
per [Chen et al.(2021)], to answer the research questions.
MBPP consists of 427 and HumanEval of 164 examples in
the format described in Sec IV-B, along with the hidden
tests and reference implementations. We modify the original
HumanEval dataset to remove any (non-hidden) input-output
examples that are included in the docstring to avoid making
the test generation task trivial.

B. Evaluation metric

For evaluating the correctness of the generated code sug-
gestions, we use the popular metric pass@k for evaluating
the accuracy of code-generation by LLMs with respect to the
hidden tests provided by each dataset [Chen et al.(2021)]. A
code suggestion is correct if it passes all the hidden tests, and
pass@k determines the mean expected value of choosing at
least one correct code suggestion within all possible samples
of size k, from an unranked set of suggestions. To evaluate
TiCoder, we define the metric pass@k@m to denote the ranked
pass@k for the code suggestions after m ≥ 1 user queries.
Recall that TiCoder outputs a ranked list of code suggestions,
so pass@k@m measures if any of the top k code suggestions
is correct. Because pass@k@m is measuring the accuracy of
a ranked list, it also provides a deterministic guarantee of
accuracy at k (given a set of code suggestions).

C. Models and Baselines

TICODER augments AI assistant workflows to improve the
code generation accuracy of the underlying LLM. To assess
TICODER’s benefits across various LLMs, we’ve chosen four
state-of-the-art completion models, which include a mix of
closed-source and open-source models. We provide a brief
description of each model next.

• OpenAI code-davinci-002 [Chen et al.(2021)] is a
closed source LLM specifically designed for code com-
pletion tasks. It is based on the GPT-3 architecture
containing 175B parameters.2

• OpenAI text-davinci-003 is also a closed
source model of size 175B parameters, however, it

2Access to this model was removed to the public by OpenAI in March 2023,
but continues to be made free and available to researchers upon request.

is based on the GPT-3.5 architecture and Instruct-
GPT [Ouyang et al.(2022)] and can be used for a variety
of natural language tasks. Compared to other non-chat
based completion models, text-davinci-003 demon-
strates highly competitive performance on a number of
tasks.

• Salesforce CodeGen-6B [Nijkamp et al.(2022)] is an
open source LLM, with 6B parameters, trained specifi-
cally to translate natural language instructions to code.

• Salesforce CodeGen2.5-7B [Nijkamp et al.(2023)] is
an improvement on CodeGen-6B and is slightly larger,
with 7B parameters. Currently, this model is the state-of-
the-art for code generation compared to other models of
similar parameter size.

Our aim is to understand how TiCoder can help improve
code generation accuracy across different LLMs, and not to
identify the best performing model. Therefore, we use default
configurations for each model, and only alter temperature.
We experimented with different temperature configurations to
optimize performance and diversity of generated code and
test suggestions. Intuitively, a temperature closer to 1 allows
LLMs to provide a more diverse set of solutions, whereas a
temperature closer to 0 forces LLMs to only generate fewer
solutions with the highest confidence. For all models we
settle on a temperature of 0.8, as it maximizes the number
of examples for which at least one correct code is produced
within 100 suggestions. To account for the non-determinism
of the LLM generations, for each dataset, we only query each
model once to generate an initial set of 100 code and 50 test
suggestions into a cache of responses. We use the same cache
across all experiments that involve the specific LLM.

D. Simulating User Response

Our proposed workflow requires real-time user response to
determine if a generated test is consistent with the user’s intent.
Therefore, in order to evaluate TICODER offline with large-
scale benchmark datasets, we define a proxy to simulate real-
time user response.

Similar to oracle-guided inductive syn-
thesis [Jha et al.(2010)], [Le et al.(2017)],
[Jha and Seshia(2017)], we use the reference implementation
bp as an oracle to answer if a test (i, o) is consistent with the
user intent, and provide the expected output bp(i) when the
test output o does not match the user intent (for TICODER-
OUTPUT). In other words, we assume that the intent of the
user is precisely captured by the semantics of the (hidden)
reference implementation. However, this models an idealized
user interaction because, in practice, users may sometimes
be unable to answer a test query in a reasonable amount of
time (say, when asked about the value of the 100th prime
number). As observed in the results of the user study, unlike
an idealized user, real participants may sometimes provide
noisy input. For example, we observe that participants are
more prone to making mistakes while providing test outputs
that dealt with edge cases. Therefore, using the oracle as a
proxy indicates that our empirical evaluation represents an
upper bound on the improvement that TiCoder can have on
the benchmarks with real users.

11

Dataset Model
Baseline TICODER-PASSFAIL TICODER-OUTPUT
pass@k pass@1@m pass@1@m

1 100 1 2 3 4 5 1 2 3 4 5

MBPP

text-davinci-003 49.16 86.88 68.04 75.26 77.33 77.88 78.08 73.67 80.00 81.31 81.97 82.41
code-davinci-002 48.25 89.75 68.42 76.21 79.37 81.18 81.97 73.89 81.25 84.63 85.95 86.79

CodeGen-6B 14.85 69.55 28.62 37.91 45.18 49.97 53.67 32.17 44.13 53.44 57.84 60.13
CodeGen2.5-7B 28.32 84.74 50.27 59.70 65.02 67.84 69.58 54.43 65.45 71.10 74.17 75.69

HumanEval

text-davinci-003 44.13 87.80 60.70 67.54 71.41 72.18 72.81 62.63 72.90 75.86 77.71 77.36
code-davinci-002 30.49 91.49 51.66 62.65 70.30 73.11 74.37 53.52 68.12 76.37 78.65 79.38

CodeGen-6B 11.41 43.55 15.32 19.29 24.64 28.11 29.56 18.00 23.91 28.90 31.56 33.14
CodeGen2.5-7B 21.39 76.21 32.82 41.03 46.51 49.47 52.33 33.28 43.97 51.98 55.52 58.59

TABLE IV: Model baseline and TiCoder results for two python datasets: MBPP and HumanEval. User interaction results are
simulated for up to m=5 test evaluation interactions. We highlight, in blue, the highest accuracy in each column.

E. Results

To answer RQ2, we evaluate the performance of four
different models, with and without TiCoder in the TICODER-
PASSFAIL and TICODER-OUTPUT settings on MBPP and
HumanEval datasets. Table IV contains all results for each
model.

The first column contains the baseline pass@1 and
pass@100 for each model on MBPP and HumanEval
datasets. Note that pass@100 denotes the fraction of ex-
amples for which an LLM generates at least one correct
code suggestion within 100 suggestions. The second and
third columns contain the results for each model, augmented
with TiCoder in TICODER-PASSFAIL and TICODER-OUTPUT
settings respectively. We report the pass@1@m metric, with
m, the number of test-validation user interactions, ranging
from 1 to 5. We report pass@k@m only for the case of
k = 1 as it is the strictest setting for assessing the impact
of TiCoder. TiCoder improves the accuracy of pass@k@m for
higher values of k as well, but we do not present them in the
interest of space.

As expected, text-davinci-003 and
code-davinci-002, the two largest models, achieve
the highest baseline performance on both datasets. Overall,
we observe that both TiCoder in the TICODER-PASSFAIL and
TICODER-OUTPUT settings significantly improve pass@1
performance, across all models. As the number of test
validation queries increase from m = 1 to m = 5 we also
observe consistent improvement in pass@1 performance.
Although the improvement is most pronounced at m = 1,
compared to baseline.

For example, on MBPP, TICODER-PASSFAIL improves
pass@1 baseline performance of text-davinci-003 from
48.25% to 68.42%, an absolute improvement of 20.17% within
one user query. TICODER-OUTPUT improves performance
to 73.89%, which is an absolute pass@1 improvement of
25.64% within one user query. This increases to almost 38%
with 5 queries. While smaller models achieve lower pass@1
and pass@100 accuracy, TiCoder still provides modest boosts
in accuracy. For the worst performing model, CodeGen-6B
on HumanEval, TICODER-PASSFAIL provides an absolute
pass@1 improvement of 3.91% within one interaction, and
TICODER-OUTPUT provides an absolute improvement of
6.59%. Similarly, the smaller CodeGen-6B with 4 interactions
outperforms the best baseline pass@1 (text-davinci-003)

for MBPP, while CodeGen2.5-7B with 3 interactions out-
performs the best baseline pass@1 (text-davinci-003) for
HumanEval.

Finally, as expected TICODER-OUTPUT consistently pro-
vides higher accuracy compared to TICODER-PASSFAIL,
since the former allows users to fix the incorrect test output.
TICODER-OUTPUT achieves an average absolute improve-
ment of 38.43% in the code generation accuracy for both
datasets and across all LLMs within 5 user interactions.
However, it is worth noting that TICODER-PASSFAIL, even
with its lightweight feedback (that generalizes to richer tests
or specifications), always stays within 7% of the benefits of
TICODER-OUTPUT. This demonstrates the power of LLMs to
generate test cases that satisfy user intent. Besides, unlike our
idealized study where a user can always provide the correct
output, our user study shows that users may have difficulty
providing the correct output for a test input.

Key Findings TiCoder significantly improves pass@1
performance for all studied LLMs on both benchmarks, with
performance improvements increasing with every test vali-
dation interaction. Additionally, the lightweight TICODER-
PASSFAIL scenario always stays within 7% of the perfor-
mance of TICODER-OUTPUT even in this idealized user
setting.

VIII. DISCUSSION

A. Tests as a developer-AI disambiguation mechanism

Results of our user study indicate that using tests as an
interactive mechanism to formalize user intent, and then prune
and rank AI generated code suggestions, can meaningfully
improve programmer performance. Results show that both As-
sistant 2 (TICODER-PASSFAIL) and Assistant 3 (TICODER-
OUTPUT) are statistically distinguishable from Assistant 1 (the
control condition without TICODER), where no interactive
test case verification or code pruning is used. Participants
using Assistant 2 are significantly more likely to correctly
evaluate AI generated code suggestions, and report reduced
task induced cognitive load, without negative impact on time
to complete each task. However, compared to Assistant 2,
participants made more mistakes when validating tests with
Assistant 3. Further research to explore a trade-off between
the approaches, in practice, should be considered. However,
we find that surfacing test cases in both forms might serve

12

as a helpful mechanism for which to reason about generated
code. While it is true that correctness likely depends on the
evaluation strategies used by each participant, participants
that were shown test cases by the AI Assistants performed
significantly better.

Recent work has shown that current developer-AI inter-
action workflows, as simulated by Assistant 1 in our study,
have raised new issues in the way that developers write
code. Results suggest a need for interaction mechanisms that
can support disambiguation; a critical feature of the usability
of AI-Assistants [McNutt et al.(2023)], [Barke et al.(2023)].
We observed how TICODER can surface a ranked list
of tests that delineate the space of possible code sug-
gestions, providing a concrete mechanism for identifying
potential ambiguities in natural language used to prompt
LLMs. Furthermore, recent work has shown that develop-
ers spend significant amount of time verifying code sug-
gestions [Mozannar et al.(2022)][Bird et al.(2022)]. While we
do not observe a statistically significant impact on the time
taken to evaluate AI-generated code suggestions when using
TICODER, we do observe a significant reduction in the amount
of cognitive effort required. We hypothesize that tests, which
provide tangible artifacts for developers to reason about the
code, can serve as a facilitating mechanism for constructing
mental models of code functionality. Ultimately, this supports
developers in the task of code evaluation. Future work should
explore this in more detail.

B. Improving LLM code generation capabilities with verified
test cases

Results of our benchmark evaluation indicate that, across
all models studies, both implementations of TICODER,
TICODER-PASSFAIL and TICODER-OUTPUT, can be used to
augment the accuracy of an LLM through improved ranking
and pruning. Specifically, we observe that using tests to better
constrain the space of possible code suggestions can improve
pass@k accuracy. This highlights the fact that current LLM ca-
pabilities may not be fully realized in practice: when prompted
for multiple code suggestions, LLMs often are capable of
generating a correct answer, but mechanisms to better rank the
set of suggestions is needed. However, the performance boost
provided by TICODER is contingent on a set of high quality
tests used by discriminative test ranking policy (Sec. IV).
If the underlying LLM is unable to generate high quality tests,
the ranking and pruning mechanism may not be as helpful.
Future work should explore more sophisticated mechanisms
for generating high quality tests that capture important spec-
ifications about the code. In this work, we explore the user
study scenario where TICODER prunes away some, but not
all of the AI generated code suggestions. It is worth noting
that if the code suggestions generated by the underlying LLM
predominantly exhibit consistent behavior, TICODER can still
be valuable to a user by providing meaningful tests alongside
the code suggestions. For example, in a scenario where all of
the suggestions are correct with respect to the user’s intent,
TICODER may not prune away any of the code suggestions,
but provides some guarantees about program behaviour to the
user.

IX. LIMITATIONS AND THREATS

Generalizability of user study results. We evaluate
TICODER under highly controlled experimental conditions,
and the ability of developers to validate tests in more com-
plex code generation scenarios may not scale. Our study
explores two distinct test validation mechanisms surfaced in
the TICODER workflow: TICODER-PASSFAIL and TICODER-
OUTPUT. On the selected tasks, we observe that, in general,
participants were able to successfully evaluate tests in both
interaction scenarios. However, in practice specifying the out-
put of generated tests may not always be a straightforward or
simple task. In addition, we restrict participants abilities to edit
the code prompt and code suggestions, to control for variables
across participants. However, this is not a true reflection of
real-world interaction behaviours. Future work should explore
the impact of TICODER on developer productivity in real-
world code settings, with broader audiences. In addition,
we only explored how TICODER impacts the correctness of
code evaluation, i.e. how well users can disambiguate code
suggestions. For example, a future experiment might examine
how TICODER impacts online metrics such as code acceptance
rates, or the total proportion of code contributed by the
AI system, accommodating for solutions that provide partial
correctness.

Generalization of benchmark evaluation results. We also
empirically evaluate TICODER using two popular and state-of-
the-art research Python benchmarks for code generation tasks:
MBPP and HumanEval. While both benchmarks exercise
common programming patterns, they may not be representative
of real-world software development. Our findings may not
generalize to a different set of programs across different
languages and problem domains.

Test execution overhead. The proposed TICODER work-
flow incurs the cost of additional LLM inference, to generate
candidate tests, as well as resource costs related to execut-
ing tests for generated code suggestions. Cost of execution
may be non-trivial, and might not scale in scenarios where
users wish to use an AI assistant to generate complex code.
Nevertheless, the potential reliability guarantees and reduced
effort for code verification represent a valuable trade-off when
weighed against the costs of inference and execution in real-
world scenarios. Future work should examine practical use of
TICODER at scale.

X. CONCLUSION

In this work, we propose the workflow of test-driven
interactive code generation using LLMs, and study it’s ef-
fectiveness through a user study and empirical evaluation
on code generation benchmarks. Our findings provide en-
couraging results around guiding user intent clarification for
generating more correct programs. Further algorithms and
experiments exploring the TICODER workflow can be found
in [Lahiri et al.(2023)].

In future work, we plan to extend and evaluate our im-
plementation reflecting real-world scenarios including: more
complex programs, an in-situ user study for various soft-
ware development tasks, and an empirical evaluation on re-

13

alistic benchmarks such as CoderEval [Yu et al.(2023)] and
NL2Fix [Fakhoury et al.(2023)].

Finally, we plan to explore if TICODER can be extended
to richer forms of formal specifications beyond tests, such as
property based tests or pre- and post-conditions generated from
user-defined prompts [Endres et al.(2023)].

REFERENCES

[Asare et al.(2022)] Owura Asare, Meiyappan Nagappan, and N Asokan.
2022. Is github’s copilot as bad as humans at introducing vulnerabilities
in code? arXiv preprint arXiv:2204.04741 (2022).

[Austin et al.(2021b)] Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie
Cai, Michael Terry, Quoc Le, et al. 2021b. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732 (2021).

[Austin et al.(2021a)] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai,
Michael Terry, Quoc Le, and Charles Sutton. 2021a. Program Synthesis
with Large Language Models. https://doi.org/10.48550/ARXIV.2108.
07732

[Barke et al.(2023)] Shraddha Barke, Michael B James, and Nadia Polikar-
pova. 2023. Grounded copilot: How programmers interact with code-
generating models. Proceedings of the ACM on Programming Languages
7, OOPSLA1 (2023), 85–111.

[Benjamini and Hochberg(1995)] Yoav Benjamini and Yosef Hochberg.
1995. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal statistical society:
series B (Methodological) 57, 1 (1995), 289–300.

[Bird et al.(2022)] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole
Forsgren, Eirini Kalliamvakou, Travis Lowdermilk, and Idan Gazit.
2022. Taking Flight with Copilot: Early insights and opportunities of
AI-powered pair-programming tools. Queue 20, 6 (2022), 35–57.

[Chen et al.(2022)] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022. CodeT: Code
Generation with Generated Tests. https://doi.org/10.48550/ARXIV.
2207.10397

[Chen et al.(2021)] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, An-
drew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large Lan-
guage Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.
03374

[Chowdhery et al.(2022)] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao,
Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily
Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Ja-
cob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal,
Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel.
2022. PaLM: Scaling Language Modeling with Pathways. https:
//doi.org/10.48550/ARXIV.2204.02311

[Dinella et al.(2022)] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and
Shuvendu Lahiri. 2022. TOGA: A Neural Method for Test Oracle
Generation. In ICSE 2022. ACM. https://www.microsoft.com/en-us/
research/publication/toga-a-neural-method-for-test-oracle-generation/

[Endres et al.(2023)] Madeline Endres, Sarah Fakhoury, Saikat Chakraborty,
and Shuvendu K Lahiri. 2023. Formalizing Natural Language Intent
into Program Specifications via Large Language Models. arXiv preprint
arXiv:2310.01831 (2023).

[Fakhoury et al.(2023)] Sarah Fakhoury, Saikat Chakraborty, Madan Musu-
vathi, and Shuvendu K Lahiri. 2023. Towards Generating Functionally
Correct Code Edits from Natural Language Issue Descriptions. arXiv
preprint arXiv:2304.03816 (2023).

[Fried et al.(2022)] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer,
and Mike Lewis. 2022. InCoder: A Generative Model for Code Infilling
and Synthesis. https://doi.org/10.48550/ARXIV.2204.05999

[GitHub(2022)] GitHub. 2022. GitHub Copilot. Accessed August 5, 2022.
https://github.com/features/copilot/.

[Gulwani(2011)] Sumit Gulwani. 2011. Automating String
Processing in Spreadsheets using Input-Output Exam-
ples. In PoPL’11, January 26-28, 2011, Austin, Texas,
USA. https://www.microsoft.com/en-us/research/publication/
automating-string-processing-spreadsheets-using-input-output-examples/

[Gulwani et al.(2017)] Sumit Gulwani, Oleksandr Polozov, and Rishabh
Singh. 2017. Program Synthesis. Found. Trends Program. Lang. 4,
1-2 (2017), 1–119. https://doi.org/10.1561/2500000010

[Hart(2006)] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20
years later. In Proceedings of the human factors and ergonomics society
annual meeting, Vol. 50. Sage publications Sage CA: Los Angeles, CA,
904–908.

[Hart and Staveland(1988)] Sandra G Hart and Lowell E Staveland. 1988.
Development of NASA-TLX (Task Load Index): Results of empirical
and theoretical research. In Advances in psychology. Vol. 52. Elsevier,
139–183.

[Jain et al.(2022)] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagara-
jan Natarajan, Suresh Parthasarathy, Sriram Rajamani, and Rahul
Sharma. 2022. Jigsaw: Large Language Models meet Pro-
gram Synthesis. In International Conference on Software Engineer-
ing (ICSE). https://www.microsoft.com/en-us/research/publication/
jigsaw-large-language-models-meet-program-synthesis/

[Jha et al.(2010)] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish
Tiwari. 2010. Oracle-guided component-based program synthesis. In
Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1, ICSE 2010, Cape Town, South Africa,
1-8 May 2010, Jeff Kramer, Judith Bishop, Premkumar T. Devanbu,
and Sebastián Uchitel (Eds.). ACM, 215–224. https://doi.org/10.1145/
1806799.1806833

[Jha and Seshia(2017)] Susmit Jha and Sanjit A. Seshia. 2017. A theory of
formal synthesis via inductive learning. Acta Informatica 54, 7 (2017),
693–726. https://doi.org/10.1007/s00236-017-0294-5

[Ji et al.(2020)] Ruyi Ji, Jingjing Liang, Yingfei Xiong, Lu Zhang, and
Zhenjiang Hu. 2020. Question Selection for Interactive Program
Synthesis. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 1143–1158. https://doi.org/10.1145/3385412.3386025

[Lahiri et al.(2023)] Shuvendu K. Lahiri, Sarah Fakhoury, Aaditya Naik,
Georgios Sakkas, Saikat Chakraborty, Madanlal Musuvathi, Piali Choud-
hury, Curtis von Veh, Jeevana Priya Inala, Chenglong Wang, and
Jianfeng Gao. 2023. Interactive Code Generation via Test-Driven User-
Intent Formalization. CoRR abs/2208.05950 (2023). https://doi.org/10.
48550/ARXIV.2208.05950 arXiv:2208.05950

[Lau(2009)] Tessa Lau. 2009. Why programming-by-demonstration systems
fail: Lessons learned for usable ai. AI Magazine 30, 4 (2009), 65–65.

[Le et al.(2017)] Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad
Raza, Abhishek Udupa, and Sumit Gulwani. 2017. Interactive program
synthesis. arXiv preprint arXiv:1703.03539 (2017).

[Lemieux et al.(2023)] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K
Lahiri, and Siddhartha Sen. 2023. Codamosa: Escaping coverage
plateaus in test generation with pre-trained large language models. In
45th International Conference on Software Engineering, ser. ICSE.

[Li et al.(2022)] Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix
Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang,
Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-
Level Code Generation with AlphaCode. https://doi.org/10.48550/
ARXIV.2203.07814

https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2108.07732
https://doi.org/10.48550/ARXIV.2207.10397
https://doi.org/10.48550/ARXIV.2207.10397
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/
https://www.microsoft.com/en-us/research/publication/toga-a-neural-method-for-test-oracle-generation/
https://doi.org/10.48550/ARXIV.2204.05999
https://github.com/features/copilot/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://www.microsoft.com/en-us/research/publication/automating-string-processing-spreadsheets-using-input-output-examples/
https://doi.org/10.1561/2500000010
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1145/3385412.3386025
https://doi.org/10.48550/ARXIV.2208.05950
https://doi.org/10.48550/ARXIV.2208.05950
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814

14

[Liang et al.(2023)] Jenny T Liang, Chenyang Yang, and Brad A Myers.
2023. Understanding the Usability of AI Programming Assistants. arXiv
preprint arXiv:2303.17125 (2023).

[Mayer et al.(2015)] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu
Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin Zorn,
and Sumit Gulwani. 2015. User interaction models for disambiguation
in programming by example. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology. 291–301.

[McNutt et al.(2023)] Andrew M McNutt, Chenglong Wang, Robert A De-
line, and Steven M Drucker. 2023. On the design of ai-powered code
assistants for notebooks. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–16.

[Mozannar et al.(2022)] Hussein Mozannar, Gagan Bansal, Adam Four-
ney, and Eric Horvitz. 2022. Reading between the lines: Modeling
user behavior and costs in AI-assisted programming. arXiv preprint
arXiv:2210.14306 (2022).

[Nijkamp et al.(2023)] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong,
Silvio Savarese, and Yingbo Zhou. 2023. Codegen2: Lessons for
training llms on programming and natural languages. arXiv preprint
arXiv:2305.02309 (2023).

[Nijkamp et al.(2022)] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong. 2022.
A Conversational Paradigm for Program Synthesis. https://doi.org/10.
48550/ARXIV.2203.13474

[Ouyang et al.(2022)] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,
Katarina Slama, Alex Ray, et al. 2022. Training language models
to follow instructions with human feedback. Advances in Neural
Information Processing Systems 35 (2022), 27730–27744.

[Perry et al.(2022)] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan
Boneh. 2022. Do Users Write More Insecure Code with AI Assistants?
arXiv preprint arXiv:2211.03622 (2022).

[Rahmani et al.(2021)] Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu
Le, Daniel Morris, Arjun Radhakrishna, Gustavo Soares, and Ashish
Tiwari. 2021. Multi-modal program inference: a marriage of pre-trained
language models and component-based synthesis. Proc. ACM Program.
Lang. 5, OOPSLA (2021), 1–29. https://doi.org/10.1145/3485535

[Schäfer et al.(2023)] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. Adaptive test generation using a large language model. arXiv
preprint arXiv:2302.06527 (2023).

[Solar-Lezama(2009)] Armando Solar-Lezama. 2009. The Sketching Ap-
proach to Program Synthesis. In Programming Languages and Systems,
Zhenjiang Hu (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 4–
13.

[Xu et al.(2022a)] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua
Hellendoorn. 2022a. A Systematic Evaluation of Large Language
Models of Code. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming (San Diego, CA, USA) (MAPS
2022). Association for Computing Machinery, New York, NY, USA,
1–10. https://doi.org/10.1145/3520312.3534862

[Xu et al.(2022b)] Frank F Xu, Bogdan Vasilescu, and Graham Neubig.
2022b. In-ide code generation from natural language: Promise and chal-
lenges. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 2 (2022), 1–47.

[Yu et al.(2023)] Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Tao Xie, and Qianxiang Wang.
2023. CoderEval: A Benchmark of Pragmatic Code Generation
with Generative Pre-trained Models. arXiv preprint arXiv:2302.00288
(2023).

[Zhang et al.(2020)] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and
Elena L Glassman. 2020. Interactive program synthesis by augmented
examples. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. 627–648.

[Ziegler et al.(2022)] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, An-
drew Rice, Devon Rifkin, Shawn Simister, Ganesh Sittampalam, and
Edward Aftandilian. 2022. Productivity assessment of neural code
completion. In MAPS@PLDI 2022: 6th ACM SIGPLAN International
Symposium on Machine Programming, San Diego, CA, USA, 13 June
2022, Swarat Chaudhuri and Charles Sutton (Eds.). ACM, 21–29.
https://doi.org/10.1145/3520312.3534864

https://doi.org/10.48550/ARXIV.2203.13474
https://doi.org/10.48550/ARXIV.2203.13474
https://doi.org/10.1145/3485535
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534864

	Introduction
	Related Work
	Improving Code Generation Accuracy
	Usability of AI Programming Assistants

	Research Questions and Paper Organization
	Proposed Approach: TiCoder
	High-level Workflow
	TiCoder Implementation
	Generating Code and Tests
	Ranking test suggestions
	Pruning and ranking code suggestions

	RQ1: User Study Methodology
	Treatments
	Control condition: AI Programming Assistant 1
	Treatment condition: AI Programming Assistant 2
	Treatment condition: AI Programming Assistant 3

	Task Design
	Identifying Task Candidates
	Generating Code and Test Suggestions

	Study Protocol
	Measured Variables
	Evaluation of Measured Variables

	RQ1: User Study Results
	Impact on Task Correctness
	Impact on Task Time
	Impact on Task Induced Cognitive Load

	RQ2: Benchmark Evaluation
	Datasets
	Evaluation metric
	Models and Baselines
	Simulating User Response
	Results

	Discussion
	Tests as a developer-AI disambiguation mechanism
	Improving LLM code generation capabilities with verified test cases

	Limitations and Threats
	Conclusion
	References

